The Benefit of Requirements Traceability When Evolving a
Software Product: A Controlled Experiment

Patrick Mider' and Alexander Egyed?

Abstract: Software traceability is a required component of many software development processes.
Advocates of requirements traceability cite advantages like easier program comprehension and sup-
port for software maintenance (i.e., software change). However, despite its growing popularity, there
exists no published evaluation about the usefulness of requirements traceability. It is important, if
not crucial, to investigate whether the use of requirements traceability can significantly support de-
velopment tasks to eventually justify its costs. We thus conducted a controlled experiment with 71
subjects re-performing real maintenance tasks on two third-party development projects: half of the
tasks with and the other half without traceability. Subjects sketched their task solutions on paper to
focus on the their ability to solving the problems rather than their programming skills. Our findings
show that subjects with traceability performed on average 24% faster on a given task and created
on average 50% more correct solutions — suggesting that traceability not only saves effort but can
profoundly improve software maintenance quality.

Keywords: requirements traceability; software evolution; effect; controlled experiment; study

1 Motivation and Study

Capture and maintenance of requirements-to-code traces reflect knowledge where require-
ments are implemented in the code is the focus of extensive research [CHGHH ™ 14]. De-
spite its growing popularity [MGP09, RMK13] surprisingly little is known about its ben-
efits. Intuitively, requirements-to-code traces should be useful for many areas of software
engineering. Researchers refer to better program comprehension and support for software
maintenance. Nonetheless, there exists no empirical work in which the effect of require-
ments traceability was measured. Does it save effort? Does it improve quality?

In this study, originally published at [ME15], we assessed whether available requirements-
to-code traces improve the performance of subjects during software maintenance and evo-
lution tasks. Therefore, we conducted an experiment involving 71 practitioners and stu-
dents with a wide range of experiences. The subjects were asked to solve tasks taken from
two software projects: the open source Gantt Project (47 KLOC) and the iTrust system
(15 KLOCQ). Eight tasks were selected, covering real bug fixes and feature extensions taken
from the projects’ documented archives. Tasks were randomly assigned to subjects, half
with and the other half without traceability. Task solutions were recorded on paper and not
implemented by the subjects. We measured the performance of subjects as the time they

! Technische Universitit Ilmenau, Software Systems Group, Ilmenau, Germany, patrick.maeder @tu-ilmenau.de
2 Johannes Kepler University, Institute for Software Systems Engineering (ISSE), Linz, Austria, alexan-
der.egyed @jku.at



spent to solve a task and the correctness of their solution. The selected, real maintenance
tasks also provided us with a gold standard as to how the original developers solved the
given tasks. Furthermore, we assessed the influence of subject experience, the kind of tasks
subjects were expected to solve, and the different project domains. All subjects were not
familiar with the projects — a situation commonly occurring during software maintenance
and a situation under which developers are expected to benefit most from traceability.

2 Results and Conclusions

In total, subjects solved 461 tasks (i.e., 6.5 tasks per subject on average). Our findings show
that subjects working on tasks with traceability performed better than subjects working
without traceability. In particular, subjects with traceability performed on average 24%
faster on tasks and created on average 50% more correct solutions. This demonstrates that
traceability is not just a means for saving some effort but can profoundly improve the
quality of the software maintenance process. There are likely many subsequent benefits
such as more effective maintenance, faster time to market, or less code degradation. We
also found that some tasks benefited more from traceability than others, especially with
regard to the correctness of the solution. Furthermore, we found that our observations
were consistent regardless of subject experience and the project domain.

The implications of this study are numerous. Traceability strongly benefits software main-
tenance regardless of subject experience. Though often perceived tedious and ineffective,
this work demonstrates a clear, measurable performance improvement to justify traceabil-
ity cost. Since this work clearly characterizes the effect of traceability, practitioners and
researchers alike may use this information to better understand the cost/benefit trade-off
of traceability — a point that will also be the focus of our future work.

Acknowledgments We are funded by the German Ministry of Education and Research
(BMBF) grant 011S14026B and the Austria Science Fund (FWF) grant FWF P 25289-N15.

References

[CHGHH'14] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Méder, and An-
drea Zisman. Software Traceability: Trends and Future Directions. In Proc. 36th
International Conference on Software Engineering (ICSE), pages 55-69, 2014.

[ME15] Patrick Méader and Alexander Egyed. Do developers benefit from requirements
traceability when evolving and maintaining a software system? Empirical Software
Engineering, 20(2):413—441, 2015.

[MGPO09] Patrick Mider, Orlena Gotel, and Ilka Philippow. Motivation Matters in the Trace-
ability Trenches. In Proc. 17th International Requirements Engineering Conference
(RE09), pages 143148, 20009.

[RMK13] Patrick Rempel, Patrick Mider, and Tobias Kuschke. An Empirical Study on
Project-Specific Traceability Strategies. In Proc. 21st International Requirements
Engineering Conference (RE13), pages 195-204, 2013.



